• Crystalline, Mixed-Valence Manganese Analogue of Prussian Blue: Magnetic, Spectroscopic, X-ray and Neutron Diffraction Studies
    P. Franz, C. Ambrus, A. Hauser, D. Chernyshov, M. Hostettler, J. Hauser, L. Keller, K. Krämer, H. Stoeckli-Evans, P. Pattison, H.-B. Bürgi and S. Decurtins
    Journal of the American Chemical Society, 126 (50) (2004), p16472-16477
    DOI:10.1021/ja0465451 | unige:3247 | Abstract | Article HTML | Article PDF
 
The compound of stoichiometry Mn(II)3[Mn(III)(CN)6]2·zH2O (z = 12−16) (1) forms air-stable, transparent red crystals. Low-temperature single crystal optical spectroscopy and single crystal X-ray diffraction provide compelling evidence for N-bonded high-spin manganese(II), and C-bonded low-spin manganese(III) ions arranged in a disordered, face-centered cubic lattice analogous to that of Prussian Blue. X-ray and neutron diffraction show structured diffuse scattering indicative of partially correlated (rather than random) substitutions of [Mn(III)(CN)6] ions by (H2O)6 clusters. Magnetic susceptibility measurements and elastic neutron scattering experiments indicate a ferrimagnetic structure below the critical temperature Tc = 35.5 K.
Alkali borohydrides MBH4 and their deuterides have been investigated by X-ray and neutron powder diffraction (M=K,Rb,Cs) and by infrared and Raman spectroscopy (M=Na,K,Rb,Cs). At room temperature the compounds crystallize with a cubic high temperature (HT) structure having Fm3m  symmetry in which the [BH4]− complexes are disordered. At low temperature (LT) the potassium compound transforms into a tetragonal low temperature structure having P42/n mc symmetry in which the [BH4]− complexes are ordered such as in the isotypic sodium congener. The B---H distances within the complex as measured on the deuteride at 1.5 K are 1.205(3) Å. Indications for a partial ordering in the rubidium and cesium compounds exist but are not sufficient for a full structural characterization. Infrared and Raman spectra at room temperature are fully assigned for both hydrides and deuterides, including the overtones and combination bands, the Fermi resonance type interactions and the 10B to 11B splitting due to the presence of natural boron in the samples.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024